
All About Morse-Smale Complexes 

What is a Morse-Smale Complex? 
Simplification: cancellations in the complex. 

An algorithm to compute for 2D PL data. 
A discrete algorithm for 3D+ data. 

Gradient Vectors 

!! The gradient of a differentiable scalar function f 

at a point p is 

!! Direction of steepest ascent 
-! perpendicular to contours 

Gradient Vector Field 

!! The vector field given by the gradient vectors of 

a scalar function is the gradient vector field 

Critical points in GVF 

!! Critical points where gradient vanishes 

Critical points in GVF - 1D 

!! Critical points where gradient vanishes 

Critical points on a 1d domain 

  Minimum                                                   Maximum 
    Index 0                                                      Index 1       

Critical points in GVF - 2D 

!! Critical points where gradient vanishes 

Critical points on a 2d domain 

  Minimum                          Saddle                          Maximum 
    Index 0                           Index 1                           Index 2         



Critical points in GVF - 3D 

!! Critical points where gradient vanishes 

Critical points on a 3d domain 

Regular     Minimum     1-Saddle     2-Saddle     Maximum 
                 Index 0          Index 1       Index 2        Index 3 

Integral Lines 

!! Integral Lines 
-! Agrees with the gradient at every point on line 
-! Has an origin and destination (lower and upper 

limits) that are critical points 
!! These form boundaries where gradient is zero 

Properties of Integral Lines 

!! Integral Lines 
-! DO NOT CROSS 
-! Are perpendicular to contours everywhere 
-! Cover all non-critical points in entire domain 

Ascending/Descending Manifolds 

!! Ascending/Descending Manifolds 
-! Associated with a critical point p 

Ascending / unstable Descending / stable 

The collection of points in integral 
lines where p is the origin 

The collection of points in integral 
lines where p is the destination 

Ascending manifolds of f are descending manifolds of -f  

Ascending manifolds form a cell complex 
 - boundary of ascending manifolds are lower dim asc manifolds 

 - two ascending manifolds do not intersect 
 - ascending manifolds partition M 

Descending manifolds form a dual cell complex 

Ascending/Descending Manifolds 

!! Ascending/Descending Manifolds 

Ascending / unstable Descending / stable 

Ascending/Descending Manifolds 

Ascending Manifolds 
A(p) = {p}    { x | x ! l, orig(l) = p} 

dim(A(p)) = d – index(p) 

Descending Manifolds 
D(p) = {p}    { x | x ! l, dest(l) = p} 

dim(D(p)) = index(p) 

" " 

3-Manifold 

2-Manifold 

1-Manifold 

0-Manifold 

3-Manifold 1-Manifold 

2-Manifold 0-Manifold 

Maximum 2-Saddle Minimum 1-Saddle 



Morse Complex 

!! Ascending/Descending Morse Complex 
-! Cell complex – partition of space 

Ascending / unstable Descending / stable 

Morse-Smale function 

!! A Morse-Smale function is a Morse function 
where ascending and descending manifolds 
intersect only transversally 

Images from wikipedia 

Morse Complex 

Descending 

Ascending 

Is this function Morse-Smale? 

Morse Complex 

Descending 

Ascending 

Is this function Morse-Smale? 
NON-TRANSVERSAL 
intersection! 

Morse-Smale function 

!! Transversal intersections: 

-!Practically we say that  

!! In 2d ascending/descending 1-manifolds 
cross at a point 

!! In 3d ascending/descending 2-manifolds 
cross along arcs  

!! Can perturb a Morse function to make it Morse-
Smale 

Morse-Smale complex 

!! Given a Morse-Smale function 

!! The cell complex formed by the intersection of 
the ascending and descending manifolds is the 
Morse-Smale complex 



Morse-Smale complex 

1D domain 

Morse-Smale complex 

1D domain 

Morse-Smale complex 

Arcs             Nodes  
1D domain 

Morse-Smale complex 

2D domain 

Morse-Smale complex 

2D domain 

Morse-Smale complex 

Quad Arc Node 
2D domain 



Morse-Smale complex 

Cells of dimension i connect 
critical points with index that 

differ by i. 

Crystal Quad Arc Node 

3D domain 

Morse-Smale complex 

!! Properties of cells 

-! What do contours look like? 

-! Can you extract the Morse complexes? 

-! Can you extract the Contour Trees? 

-! What is wrong with the definition: 

!! A cell of the Morse-Smale complex is composed of the 
integral lines that share a common origin and 
destination? 

A Simple Example A Simple Example 

A Simple Example A Simple Example 



A Simple Example Simplification 

Cancellations Cancellations – how does it look? 

!! What happens to the complex? 
-! Cells are extended 
-! Cells merge 
-! Arcs merge 
-! Arcs are deleted 
-! Nodes are removed 

Cancellations – a general definition 

!! Combinatorial change 

-! Lower neighbors of the upper node are connected 

to upper neighbors of the lower node 
-! All the arcs connected to u and l are removed 
-! u and l are removed 

Cancellations – 2D case 

!! For the special case of 2D, a cancellation is 

the merging of an extremum-saddle-

extremum 



Cancellations – 3D case 

!! Saddle-Extremum cancellations just as in 2D 

!! 1Saddle-2Saddle cancellations 

Computing the 2d MS complex 

!! Why don't we just integrate from every point? 
-! Gradient descent 

Computing the 2d MS complex 

!! Crossing integral lines! 
-! Consistency – want quads 
-! What do you do with degeneracies? 

!! Flat regions 
!! multi-saddles 

Algorithm 1 – 2D MS complex 

!! Edelsbrunner et al. Hierarchical Morse Complexes for 

Piecewise Linear 2-Manifolds 

-! Input: a scalar function on a simplicial 2-manifold mesh 
!! Triangles, edges, vertices 

-! Output: the Quasi-Morse-Smale complex 

Algorithm 1 – 2D MS complex 

!! 2-Stage Combinatorial algorithm 

!! (0) identify all critical points  

!! (1) trace descending paths from saddles 

!! (2) trace ascending paths from saddles, not 
allowing crosses of descending lines 

A Simple Example 



Algorithm 1 – 2D MS complex 

!! (0) identify all critical points  

? ? ? 

A Simple Example 

Algorithm 1 – 2D MS complex 

!! (1) trace descending paths from saddles 
-! Extend paths along steepest downward edge 

Merging paths are legal – represent a split between paths 

ONCE THINGS MERGE THEY WILL NEVER SPLIT!!!!!! 

A Simple Example 

A Simple Example Algorithm 1 – 2D MS complex 

!! (2) trace ascending paths from saddles 
-! Must be careful not to cross descending lines!!!! 

Paths ending at a saddle are 
forced around the saddle 

Ascending paths are forced not 
to intersect descending paths 



A Simple Example A Simple Example 

Algorithm 1 – 2D MS complex 

!! Results 
-! Combinatorial method 
-! Handles degeneracies 
-! Care has to be taken in  

keeping things separated 

Algorithm 2 – 3D MS complex 

!! Why is simple extension of 2D ideas difficult? 

–! Trace descending manifolds 

•! Arcs and surfaces from saddles 

–! Trace ascending manifolds, keeping them 

separate from existing descending manifolds 

H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds.  
in ``Proc. 19th Ann. Sympos. Comput. Geom. 2003'', 361-370. 

Algorithm 3 – Discrete MS complex 

!! Simple, generic, applicable to any dimension 

!! Based on discrete Morse theory: 

R. Forman. A users guide to discrete Morse theory. In Proc. of the 2001 Internat. Conf. on 

Formal Power Series and Algebraic Combinatorics, A special volume of Advances in Applied 

Mathematics, page 48, 2001. 

T. Lewiner. Constructing discrete Morse functions. Master’s thesis, Department of Mathematics, 

PUC-Rio, 2002. 

Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function Discrete samples 



Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 

Discrete samples 
Discrete gradient vectors 

Pair a (d-1)-cell with a d-cell as the tail 
and head  of a gradient arrow  

Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 

Discrete samples 
Discrete gradient vectors 

Pair a (d-1)-cell with a d-cell as the tail 
and head  of a gradient arrow  

quad edge vertex 

faces : cells in the closure of # 

co-faces :  cells whose closure contain # 

facet : face of # with dimension different by 

one 

co-facet : co-face of # with dimension 

different by one 

Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 

Discrete samples 
Discrete gradient vectors 

Pair a (d-1)-cell with a d-cell as the tail 
and head  of a gradient arrow  

Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 
Integral lines 

Discrete samples 
Discrete gradient vectors 
Gradient paths 

A sequence of gradient vectors 

Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 
Integral lines 
Critical points 

Discrete samples 
Discrete gradient vectors 
Gradient paths 
Critical cells 

Unpaired cells in the discrete gradient  
Index = dimension of the cell    

Minimum Saddle Maximum 

! (p) = 0 

!    

Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 
Integral lines 
Critical points 
Morse-Smale Complex 

Discrete samples 
Discrete gradient vectors 
Gradient paths 
Critical cells 
Morse-Smale Complex 

A cell consists of the sum of paths 
sharing a common origin and 
destination    

A cell consists of Integral lines sharing 
a common origin and destination    



Continuous to discrete Morse 
theory 

Continuous Case Discrete Case 

Morse function 
Continuous gradient 
Integral lines 
Critical points 
Morse-Smale Complex 

Discrete samples 
Discrete gradient vectors 
Gradient paths 
Critical cells 
Morse-Smale Complex 

Algorithm 3 – Discrete MS complex 

!! Construct a discrete gradient vector field 

!! Trace ascending and descending manifolds 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

0 1 2 

1 4 3 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Assign a value to every cell 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 0 



Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 0 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

? 

? 

i = 0 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

? 

? 

Can pair # with ! if  

# is only unmarked facet 
 of ! and f(#) < f(!)  i = 0 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

? 

? 

i = 0 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 0 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 0 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 
1 

4 

1 

4 4 

2 



Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 0 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 
1 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 0 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 
1 0 1 2 

1 2 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 
1 0 1 2 
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3 
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4 2 
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4 

2 

i = 1 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

0 1 2 

1 4 3 

3 

4 

4 

1 

4 2 

4 

4 

2 
1 0 1 2 

1 2 3 

3 

4 

4 

1 

4 2 

4 

4 

2 

i = 1 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 1 

0 1 2 
1 2 

1 2 3 

3 

4 

4 4 2 

4 

4 

Computing the discrete 
gradient on a mesh 

•! Given a mesh M with scalar valued defined at 
vertices 

•! Create gradient arrows in direction of 
steepest descent 

For i = 0, …. , d 
      While not all i-cells have been marked   
              lowest = Lowest_Unmarked_iCell() 

 If Can_Pair (lowest) 
       Pair_With_Steepest_Descent_cofacet(lowest) 

  Else 
       Set_Critical(lowest) 

i = 2 

0 1 2 
1 2 

1 2 3 

3 

4 

4 4 2 

4 

4 2 4 



Computing the discrete 
gradient on a mesh 

•! Now we have a discrete gradient! 

•! The Morse-Smale complex is given by 

simply tracing gradient paths  

–! Arcs are paths that start and end at critical 
cells 

0 1 2 
1 2 

1 2 3 

3 

4 

4 4 2 

4 

4 2 4 

Computing the discrete 
gradient on a mesh 

•! Now we have a discrete gradient! 

•! The Morse-Smale complex is given by 

simply tracing gradient paths  

–! Arcs are paths that start and end at critical 
cells 

1 2 
1 

2 3 

3 4 4 2 

4 

2 

0 
2 

1 
4 

4 4 
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Questions? 


